Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Sci Total Environ ; 927: 172223, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588737

RESUMO

This study compares seven machine learning models to investigate whether they improve the accuracy of geochemical mapping compared to ordinary kriging (OK). Arsenic is widely present in soil due to human activities and soil parent material, posing significant toxicity. Predicting the spatial distribution of elements in soil has become a current research hotspot. Lianzhou City in northern Guangdong Province, China, was chosen as the study area, collecting a total of 2908 surface soil samples from 0 to 20 cm depth. Seven machine learning models were chosen: Random Forest (RF), Support Vector Machine (SVM), Ridge Regression (Ridge), Gradient Boosting Decision Tree (GBDT), Artificial Neural Network (ANN), K-Nearest Neighbors (KNN), and Gaussian Process Regression (GPR). Exploring the advantages and disadvantages of machine learning and traditional geological statistical models in predicting the spatial distribution of heavy metal elements, this study also analyzes factors affecting the accuracy of element prediction. The two best-performing models in the original model, RF (R2 = 0.445) and GBDT (R2 = 0.414), did not outperform OK (R2 = 0.459) in terms of prediction accuracy. Ridge and GPR, the worst-performing methods, have R2 values of only 0.201 and 0.248, respectively. To improve the models' prediction accuracy, a spatial regionalized (SR) covariate index was added. Improvements varied among different methods, with RF and GBDT increasing their R2 values from 0.4 to 0.78 after enhancement. In contrast, the GPR model showed the least significant improvement, with its R2 value only reaching 0.25 in the improved method. This study concluded that choosing the right machine learning model and considering factors that influence prediction accuracy, such as regional variations, the number of sampling points, and their distribution, are crucial for ensuring the accuracy of predictions. This provides valuable insights for future research in this area.

2.
Food Chem ; 449: 139272, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604030

RESUMO

This study presents a novel approach toward the one-pot green synthesis of ZIF-8/IgG composite, focusing on its precise orientation and protection of the anti-aflatoxins antibody. The antibody orientation is achieved through the specific binding of IgG to the Fc region of the antibody, while the antibody protection is accomplished by the structural change restriction of ZIF-8 framework to the antibody. Consequently, the antibody exhibits enhanced target capability and significantly improved tolerance to organic solvents. The ZIF-8/IgG/anti-AFT was employed for the purification and detection of AFTs by coupling with UPLC. Under optimized conditions, the recoveries of spiked AFTs in peanut oils are between 86.1% and 106.4%, with relative standard deviations (RSDs) ranging from 0.8% to 8.8%. The linearity range is 0.5-20.0 ng for AFB1 and AFG1, 0.125-5.0 ng for AFB2 and AFG2, the limit of detection is 0.1 ng for AFB1 and AFG1, 0.03 ng for AFB2 and AFG2.


Assuntos
Aflatoxinas , Contaminação de Alimentos , Química Verde , Imunoglobulina G , Óleo de Amendoim , Aflatoxinas/análise , Aflatoxinas/imunologia , Aflatoxinas/isolamento & purificação , Contaminação de Alimentos/análise , Óleo de Amendoim/química , Imunoglobulina G/imunologia , Imunoglobulina G/química , Anticorpos/imunologia , Anticorpos/química , Cromatografia Líquida de Alta Pressão
3.
Bioinspir Biomim ; 19(4)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648793

RESUMO

The human toe, characterized by its rigid-flexible structure comprising hard bones and flexible joints, facilitates adaptive and stable movement across varied terrains. In this paper, we utilized a motion capture system to study the adaptive adjustments of toe joints when encountering obstacles. Inspired by the mechanics of toe joints, we proposed a novel design method for a rigid-flexible coupled wheel. The wheel comprises multiple elements: a rigid skeleton, supporting toes, connecting shafts, torsion springs, soft tendons, and damping pads. The torsion springs connect the rigid frame to the supporting toes, enabling them to adapt to uneven terrains and pipes with different diameters. The design was validated through kinematic and dynamic modeling, rigid-flexible coupled dynamics simulation, and stress analysis. Different stiffness coefficients of torsion springs were compared for optimal wheel design. Then, the wheel was applied to a sewer robot, and its performance was evaluated and compared with a pneumatic rubber tire in various experiments, including movement on flat surfaces, overcoming small obstacles, adaptability tests in different terrains, and active driving force tests in dry and wet pipelines. The results prove that the designed wheel showed better stability and anti-slip properties than conventional tires, making it suitable for diverse applications such as pipeline robots, desert vehicles, and lunar rovers.


Assuntos
Desenho de Equipamento , Robótica , Robótica/instrumentação , Humanos , Fenômenos Biomecânicos , Dedos do Pé/fisiologia , Biomimética/métodos , Biomimética/instrumentação , Modelos Biológicos , Articulação do Dedo do Pé/fisiologia , Simulação por Computador , Movimento/fisiologia
4.
Foods ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540943

RESUMO

Lactoferrin (LF), an iron-binding glycoprotein with immunological properties and a high nutritional value, has emerged as a prominent research focus in the field of food nutrition. Lactoferrin is widely distributed in raw milk and milk that has undergone low-temperature heat treatment during pasteurization, making its rapid and accurate detection crucial for ensuring the quality control of dairy products. An enzyme-linked immunosorbent assay-based analytical protocol has often been referred to for the detection of LF in real samples. Signal amplification was accomplished using the streptavidin-biotin system. Here, an automated magnetic beads-based sandwich chemiluminescence enzyme immunoassay (MBs-sCLEIA) system was developed for the quantification of lactoferrin in pasteurized milk. The MBs-sCLEIA system consists of an automated chemiluminescence-based analyzer and a lactoferrin MBs-sCLEIA assay kit. Notably, our proposed method eliminates the need for pretreatment procedures and enables the direct addition of milk samples, allowing for the automatic quantitative detection of lactoferrin within a rapid 17 min timeframe for up to eight samples simultaneously. The MBs-sCLEIA was linear over the range of 7.24-800 ng/mL and displayed a limit of detection (LOD) of 2.85 ng/mL. As its good recovery and CV values indicate, the method exhibited high precision and accuracy. Furthermore, it was verified that it was selective towards five additional common milk proteins. A good correlation was observed between the results from the MBs-sCLEIA and heparin affinity column-HPLC (r2 = 0.99042), which proves to be a useful and practicable way of conducting an accurate analysis of lactoferrin in dairy products.

5.
BMC Plant Biol ; 24(1): 52, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229007

RESUMO

BACKGROUND: MYB transcription factors are splay a vital role in plant biology, with previous research highlighting the significant impact of the R2R3-MYB-like transcription factor MYB5 on seed mucilage biosynthesis, trichome branching, and seed coat development. However, there is a dearth of studies investigating its role in the regulation of proanthocyanidin (PA) biosynthesis. RESULTS: In this study, a total of 51 MYB5 homologous genes were identified across 31 species belonging to the Brassicaceae family, with particular emphasis on Brassica napus for subsequent investigation. Through phylogenetic analysis, these genes were categorized into four distinct subclasses. Protein sequence similarity and identity analysis demonstrated a high degree of conservation of MYB5 among species within the Brassicaceae family. Additionally, the examination of selection pressure revealed that MYB5 predominantly underwent purifying selection during its evolutionary history, as indicated by the Ka/Ks values of all MYB5 homologous gene pairs being less than one. Notably, we observed a higher rate of non-synonymous mutations in orthologous genes compared to paralogous genes, and the Ka/Ks value displayed a stronger correlation with Ka. In B. napus, an examination of expression patterns in five tissues revealed that MYB5 exhibited particularly high expression in the black seed coat. The findings from the WGCNA demonstrated a robust correlation between MYB5 and BAN(ANR) associated with PA biosynthesis in the black seed coat, providing further evidence of their close association and co-expression. Furthermore, the results obtained from of the analysis of protein interaction networks offer supplementary support for the proposition that MYB5 possesses the capability to interact with transcriptional regulatory proteins, specifically TT8 and TT2, alongside catalytic enzymes implicated in the synthesis of PAs, thereby making a contribution to the biosynthesis of PAs. These findings imply a plausible and significant correlation between the nuique expression pattern of MYB5 and the pigmentation of rapeseed coats. Nevertheless, additional research endeavors are imperative to authenticate and substantiate these findings. CONCLUSIONS: This study offers valuable insights into the genetic evolution of Brassicaceae plants, thereby serving as a significant reference for the genetic enhancement of Brassicaceae seed coat color.


Assuntos
Arabidopsis , Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Arabidopsis/genética , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sementes , Regulação da Expressão Gênica de Plantas
6.
Dalton Trans ; 53(1): 206-214, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38032071

RESUMO

Pd25Cu75@SiO2 core-shell and PdCu@SiO2@Cu core-shell-satellite architectures were fabricated by silica-coating of Pd25Cu75 colloids in a reverse microemulsion. Hydrolysis of tetraethylorthosilicate in the reverse microemulsion containing hydrazine and ammonia yielded a core-shell structure, while the use of ammonia only, instead of a mixture of hydrazine and ammonia, formed a core-shell-satellite structure. The ammonia-leached copper species migrated onto the developing silica shell and formed smaller Cu clusters. Air-calcination at 673 K followed by H2-reduction at 773 K of the as-synthesized samples removed the organic surfactants and generated the permeable porous silica shells. The core-shell catalyst consisted of a metal core (8.5 nm) and a silica shell (7.8 nm), while the core-shell-satellite catalyst was composed by a metal core (7.0 nm), a silica shell (8.0 nm), and satellite Cu clusters (1.4 nm) on the silica shell. When used to catalyze the selective hydrogenation of acetylene to ethylene, the core-shell-satellite catalyst showed substantially enhanced activity and stability because of the synergetic catalysis between the metal core and the surrounding Cu clusters.

7.
Adv Sci (Weinh) ; 10(35): e2304521, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875418

RESUMO

The forkhead box transcription factor A2 (FOXA2) is a transcription factor and plays a key role in embryonic development, metabolism homeostasis and tumor cell proliferation; however, its regulatory potential in CRC is not fully understood. Here, it is found that FOXA2 expression is markedly up-regulated in tumor samples of CRC patients as compared with the normal tissues, which is closely associated with the worse survival in patients with CRC. Notably, a positive correlation between FOXA2 and nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) gene expression is observed in CRC patients. Mechanistically, FOXA2 depletion weakens the activation of Nrf2 pathway and decreases GPX4 level in CRC cells, thereby leading to ferroptosis, which is further supported by bioinformatic analysis. More intriguingly, the E3 ubiquitin ligase tripartite motif containing 36 (TRIM36) is identified as a key suppressor of FOXA2, and it is observed that TRIM36 can directly interact with FOXA2 and induce its K48-linked polyubiquitination, resulting in FOXA2 protein degradation in vitro. Taken together, all the studies demonstrate that FOXA2 mediated by TRIM36 promotes CRC progression by inhibiting the Nrf2/GPX4 ferroptosis signaling pathway, thus providing a new therapeutic target for CRC treatment.


Assuntos
Neoplasias Colorretais , Ferroptose , Feminino , Gravidez , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fator 2 Relacionado a NF-E2/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Fator 3-beta Nuclear de Hepatócito/genética
8.
J Virol ; 97(11): e0048023, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877715

RESUMO

IMPORTANCE: Viruses are able to mimic the physiological or pathological mechanism of the host to favor their infection and replication. Virus-mock basement membrane (VMBM) is a Megalocytivirus-induced extracellular structure formed on the surface of infected cells and structurally and functionally mimics the basement membrane of the host. VMBM provides specific support for lymphatic endothelial cells (LECs) rather than blood endothelial cells to adhere to the surface of infected cells, which constitutes a unique phenomenon of Megalocytivirus infection. Here, the structure of VMBM and the interactions between VMBM components and LECs have been analyzed at the molecular level. The regulatory effect of VMBM components on the proliferation and migration of LECs has also been explored. This study helps to understand the mechanism of LEC-specific attachment to VMBM and to address the issue of where the LECs come from in the context of Megalocytivirus infection.


Assuntos
Membrana Basal , Células Endoteliais , Iridoviridae , Vasos Linfáticos , Membrana Basal/metabolismo , Membrana Basal/virologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Iridoviridae/fisiologia , Vasos Linfáticos/citologia , Proliferação de Células , Movimento Celular , Vasos Sanguíneos/citologia , Interações entre Hospedeiro e Microrganismos
9.
Environ Sci Technol ; 57(40): 15037-15046, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37766473

RESUMO

The sea surface microlayer (SML) is the uppermost ∼1000 µm of the surface of the ocean. With distinct physicochemical properties and position relative to the adjacent subsurface waters (SSWs), the ubiquitous distribution and high dynamics of the SML greatly regulate the global air-sea gas exchange and biogeochemistry. Mercury (Hg) redox chemistry in surface seawaters and air-sea exchange of gaseous Hg (mainly Hg(0)) fundamentally control the global oceanic Hg cycle. However, the occurrence and transformation of Hg in the SML have been poorly quantified. Here we optimize the traditional SML sampling system to make it more suitable for dissolved gaseous Hg (DGM, mainly Hg(0)) sampling. We then assess the temporal and spatial variability of DGM, total Hg, dissolved organic carbon (DOC), and Hg redox chemistry in the SML and SSWs of diverse marine environments. Our data suggest a general DGM, total Hg, and DOC enrichment in the SML relative to the SSWs but with complex variability in time and space. The incubation experiments further reveal the complex characteristics of Hg redox chemistry between the SML and SSWs. We discuss important implications of the SML Hg cycle on air-sea Hg exchange and suggest wider investigations of the SML Hg cycle in the global hydrosphere.


Assuntos
Mercúrio , Poluentes Químicos da Água , Gases/análise , Gases/química , Mercúrio/análise , Oceanos e Mares , Água do Mar/química , Monitoramento Ambiental , Poluentes Químicos da Água/análise
10.
Mar Pollut Bull ; 195: 115536, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37708606

RESUMO

The coastal streams (CSs) and sewage outfalls (SOs) are widely distributed and direct anthropogenic stress on global coastal ecosystems. However, the CS/SO-associated mercury (Hg) discharge, pollution and cycle in nearshore environment are less quantified. Here, we report that total Hg (THg) and methylmercury (MMHg) concentrations in waters of CSs (n = 8) and SOs (n = 15) of the northern China were ∼102 to 103 times of coastal surface waters and 10 to 102 times of major rivers in China and other regions. The CS/SO discharges resulted in the increase of total organic carbon (TOC) contents, THg and MMHg concentrations and TOC-normalized THg and MMHg concentrations in sediments of CS/SO-impacted coasts. The laboratory experiments further illustrated that the CS/SO-impacted sediments characterized with high potentials of dissolved THg and MMHg productions and releases. Our findings indicate that the layout optimization of SOs is able to reduce the Hg risk in coastal environment.

11.
Environ Pollut ; 335: 122383, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586689

RESUMO

Gaseous mercury (mainly elemental mercury, Hg(0)) exchange between air and Earth's surfaces is one of the most critical fluxes governing global Hg cycle. As an important and unique part of intertidal ecosystem, tidal flat is characterized by periodic inundation and exposure due to tidal cycle, generating varying hydrological, photochemical and biogeochemical processes. However, quantitative and mechanistic understanding of Hg(0) dynamics between air and exceptionally dynamic tide flats has remained limited to date. In this study, we select five representative tidal flat sediments from typical coastal habits of Chinese coastlines to perform laboratory incubation experiments for deciphering the effect of the interaction of tidal cycle and solar radiation on Hg(0) dynamics over tidal flats with different sediment compositions. We show that sediment Hg concentration, tidal cycle and solar radiation collectively modulate the air-surface Hg(0) exchange over tidal flats and highlight that the photochemistry dominates the Hg(0) production and emission over tidal flats. We find that the daytime inundation presents highest Hg(0) emission fluxes for Hg-poor sediment, but the daytime exposure is the hot moment of Hg(0) emission from Hg-rich sediments and substantially contributes to daily Hg(0) emission fluxes. In the treatment to mimic semidiurnal tide, the daily Hg(0) fluxes are positively correlated to sediment Hg concentrations. Combining our mechanistic insights on air-surface Hg(0) exchange over tidal flats and related data and knowledge reported by other studies, we discuss the implications of our study for field measurement and model development of Hg(0) dynamics over highly dynamic tidal flats. We conclude that the air-surface Hg(0) dynamics over tidal flats are extremely complex and highly variable, and a greater understanding the interactions between natural processes, human impacts and climate forcings will better constrain current and future Hg biogeochemical cycle in global tidal flats.


Assuntos
Mercúrio , Humanos , Mercúrio/análise , Gases/análise , Ecossistema , Clima , Monitoramento Ambiental
12.
Water Res ; 244: 120455, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572463

RESUMO

Coastal ecosystem is an important zone of mercury (Hg) storage and hotspot of neurotoxic methylmercury (MMHg) production and bioaccumulation. The releases of Hg from coastal aquifer or subterranean estuary (STE) via submarine groundwater discharge (SGD) to coastal waters provide an important source of Hg from land to seas. However, the transport and biogeochemical transformation of Hg in STEs are less quantified. In this study, we documented total Hg (THg) and MMHg dynamics in two distinct STEs (a sandflat at an open coast versus a mudflat at a bay) during two different seasons (December versus August) in the temperate coast of northern China, and further applied the salinity-based conservative mixing model (CMM) to quantify the coupling effect of hydrological and biogeochemical processes on STE Hg cycle. Our field data presented large variations of THg and MMHg concentrations and%MMHg/THg of groundwater and sediment in both STEs over time and space. The CMM results clearly displayed substantial divergences of dissolved THg and MMHg from salinity in groundwater between sites and seasons, and the concentration and percent deviations in the Hg-rich mudflat were significantly higher than those in the Hg-poor sandflat. Our findings indicate the non-conservative mixing behaviors of Hg along the groundwater flow paths of both STEs, and the Hg-rich intertidal zone could be hotspot for the production and source of dissolved THg and MMHg to coastal waters via SGD. Our results provide field evidence to highlight that the hydrological shifts and biogeochemical processes collectively drive complex transport and biogeochemical transformation of Hg in STEs. The non-conservative mixing behaviors of Hg in STEs also highlight that, for more accurately calculating SGD-derived Hg fluxes to coastal seas, we need to carefully select the groundwater zonation of STE to better represent the output endmember. Our findings also address that human activities and climate change will profoundly alter the Hg biogeochemical cycle and toxicology in global coastal aquifers.


Assuntos
Água Subterrânea , Mercúrio , Humanos , Mercúrio/análise , Água do Mar , Estuários , Ecossistema , Monitoramento Ambiental/métodos , Movimentos da Água
13.
Inorg Chem ; 62(30): 12111-12118, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37471173

RESUMO

Phase transition between iron oxides practically defines their functionalities in both physical and chemical applications. Direct observation of the atomic rearrangement and a quantitative description of the dynamic behavior of the phase transition, however, are rare. Here, we monitored the structure evolution from a rod-shaped hematite nanoparticle to magnetite during H2 reduction at elevated temperatures. Environmental transmission electron microscopy observations, along with selected area electron diffraction experiments, identified that the reduction preferentially commenced with Fe3O4 nucleation on the surface defective sites, followed by laterally growing into a Fe3O4 film until fully covering the particle surface. The Fe3O4 phase then propagated toward the bulk particle via a Fe3O4/α-Fe2O3 interface with the relationship α-Fe2O3(0001)//Fe3O4(111) in an aligned orientation of [112]Fe3O4||[112̅0]α-Fe2O3. Upon this Fe3O4/α-Fe2O3 interface, the Fe-O octahedra in Fe3O4(111) (as layer A) matches that of α-Fe2O3(0001) at a rotation angle of 30°, and the reduction proceeds in such a pattern that two-thirds of the FeOh in the adjacent layer (layer B) is transformed into FeTe.

14.
Planta ; 258(1): 19, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314587

RESUMO

MAIN CONCLUSION: BraANS.A3 was the key gene controlling purple leaf color in pak choi, and two short fragments of promoter region in green pak choi might be interfering its normal expression. Pak choi (B. rapa L. ssp. chinensis) is an influential and important vegetable with green, yellow, or purple leaves that is cultivated worldwide. The purple leaves are rich in anthocyanins, but the underlying genetics and evolution have yet to be extensively studied. Free-hand sections of the purple leaves indicated that anthocyanins mainly accumulate throughout the adaxial and abaxial epidermal leaf cells. Segregation analyses of an F2 population of a B. rapa ssp. chinensis L. purple leaf mutant ZBC indicated that the purple trait is controlled by an incompletely dominant nuclear gene. Bulked segregant analysis (BSA) showed that the key genes controlling the trait were between 24.25 and 38.10 Mb on chromosome A03 of B. rapa. From the annotated genes, only BraA03g050560.3C, homologous to Arabidopsis AtANS, was related to the anthocyanin synthesis pathway. Genome annotation results and transcriptional sequencing analyses revealed that the BraANS.A3 gene was involved in the purple leaf trait. qRT-PCR analyses showed that BraANS.A3 was highly upregulated in ZBC but hardly expressed in the leaves of an inbred homozygous line of B. campestris ssp. chinensis L. green leaf mutant WTC, indicating that BraANS.A3 played a key role catalyzing anthocyanin synthesis in ZBC. Full-length sequence alignment of BraANS.A3 in WTC and ZBC showed that it was highly conserved in the gene region, with significant variation in the promoter region. In particular, the insertion of two short fragments of the promoter region in WTC may interfere with its normal expression. The promoter regions of ANS in six Brassica species all had multiple cis-elements involved in responses to abscisic acid, light, and stress, suggesting that ANS may be involved in multiple metabolic pathways or biological processes. Protein-protein interactions predicted that BraANS.A3 interacts with virtually all catalytic proteins in the anthocyanin synthesis pathway and has a strong relationship with Transparent Testa 8 (TT8). These results suggest that BraANS.A3 promotes anthocyanin accumulation in purple pak choi and provide new insights into the functional analysis of anthocyanin-related genes in Chinese cabbage and transcriptional regulatory networks.


Assuntos
Arabidopsis , Brassica rapa , Brassica , Brassica rapa/genética , Antocianinas , Ácido Abscísico , Arabidopsis/genética
15.
BMC Genomics ; 24(1): 103, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894869

RESUMO

Yellow seed is one favorite trait for the breeding of Brassica oilseed crops, but the performance of seed coat color is very complicated due to the involvement of various pigments. The change of seed coat color of Brassica crops is related to the specific synthesis and accumulation of anthocyanin, and the expression level of structural genes in anthocyanin synthesis pathway is specifically regulated by transcription factors. Despite some previous reports on the regulations of seed coat color from linkage marker development, gene fine-mapping and multi-omics association analysis, the trait of Brassica crops is affected by the evolutionary events such as genome triploidization, the regulatory mechanism is still largely unknown. In this study, we identified genes related to anthocyanin synthesis in six Brassica crops in U-triangle at the genome-wide level and performed collinearity analysis. A total of 1119 anthocyanin-related genes were identified, the collinear relationship of anthocyanin-related genes on subgenomic chromosomes was the best in B. napus (AACC) and the worst in B. carinata (BBCC). The comparisons of gene expressions for anthocyanin metabolic pathways in seed coats during seed development revealed differences in its metabolism among these species. Interestingly, the R2R3-MYB transcription factors MYB5 and TT2 were differentially expressed at all eight stages of seed coat development, indicating that they might be the key genes that caused the variation of the seed coat color. The expression curve and trend analyses of the seed coat development period showed that the main reason for the unexpressed copies of MYB5 and TT2 was likely gene silencing caused by gene structural variation. These results were valuable for the genetic improvement of Brassica seed coat color, and also provided new insights into gene multicopy evolution in Brassica polyploids.


Assuntos
Brassica , Brassica/genética , Antocianinas/genética , Antocianinas/metabolismo , Pigmentação/genética , Melhoramento Vegetal , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
BMC Plant Biol ; 23(1): 98, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800944

RESUMO

BACKGROUND: Chromosomal variations have been revealed in both E. sibiricus and E. nutans, but chromosomal structural variations, such as intra-genome translocations and inversions, are still not recognized due to the cytological limitations of previous studies. Furthermore, the syntenic relationship between both species and wheat chromosomes remains unknown. RESULTS: Fifty-nine single-gene fluorescence in situ hybridization (FISH) probes, including 22 single-gene probes previously mapped on wheat chromosomes and other newly developed probes from the cDNA of Elymus species, were used to characterize the chromosome homoeologous relationship and collinearity of both E. sibiricus and E. nutans with those of wheat. Eight species-specific chromosomal rearrangements (CRs) were exclusively identified in E. sibiricus, including five pericentric inversions in 1H, 2H, 3H, 6H and 2St; one possible pericentric inversion in 5St; one paracentric inversion in 4St; and one reciprocal 4H/6H translocation. Five species-specific CRs were identified in E. nutans, including one possible pericentric inversion in 2Y, three possible pericentric multiple-inversions in 1H, 2H and 4Y, and one reciprocal 4Y/5Y translocation. Polymorphic CRs were detected in three of the six materials in E. sibiricus, which were mainly represented by inter-genomic translocations. More polymorphic CRs were identified in E. nutans, including duplication and insertion, deletion, pericentric inversion, paracentric inversion, and intra- or inter-genomic translocation in different chromosomes. CONCLUSIONS: The study first identified the cross-species homoeology and the syntenic relationship between E. sibiricus, E. nutans and wheat chromosomes. There are distinct different species-specific CRs between E. sibiricus and E. nutans, which may be due to their different polyploidy processes. The frequencies of intra-species polymorphic CRs in E. nutans were higher than that in E. sibiricus. To conclude, the results provide new insights into genome structure and evolution and will facilitate the utilization of germplasm diversity in both E. sibiricus and E. nutans.


Assuntos
Elymus , Elymus/genética , Hibridização in Situ Fluorescente/métodos , Aberrações Cromossômicas , Mapeamento Cromossômico , Translocação Genética
17.
ACS Appl Mater Interfaces ; 14(50): 55644-55652, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36507662

RESUMO

A face-centered tetragonal (fct) AuCu particle with a size of 7.1 nm and an Au/Cu molar ratio of 1/1 was coated by a silica shell of 6 nm thickness. Segregation of Cu atoms from the metal particle under an oxidative atmosphere precisely mediated the CuOx-Au interfacial structure by simply varying the temperature. As raising the temperature from 473 to 773 K, more Cu atoms emigrated from the AuCu particle and were oxidized into CuOx layers that grew up to 0.8 nm in thickness. Simultaneously, the size of the Au-rich particle lowered moderately while the crystalline structure transformed from the fct phase into the face-centered cubic (fcc) phase. The CuOx-Au interface shifted from the CuOx monolayer bound to Au single-atoms to Au@CuOx core-shell geometry, while the catalytic activity for CO oxidation at 433 K decreased dramatically. Moreover, a sharp loss in activity was observed as the crystal-phase transition occurred. This change in catalytic performance was ascribed to the geometrical configuration at the interfacial sites: the synergetic effect between the fct-AuCu particle and CuOx monolayer contributed to the much higher activity, whereas the fcc-AuCu/Au particle weakened its interaction with the thicker CuOx layer and thus decreased the activity.

18.
Nanomaterials (Basel) ; 12(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36432239

RESUMO

In this study, ZnO nanoparticles were prepared by a hydrothermal method with varying the reaction times, material ratios and reaction temperatures. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray Diffraction (XRD) and Fourier infrared spectroscopy (FTIR). It was shown that the material ratio significantly affected the structure and morphology of the synthesized ZnO nanoparticles, and then the uneven nano-octahedral structure, uniform nano-octahedral structure, nano-tubular structure, and nano-sheet structure could be obtained successively. The synthesized ZnO nanoparticles as mordant were used for the dyeing of silk fabrics with different natural dyes (tea polyphenols and hematoxylin). Moreover, they could improve the dyeing properties and fastness (wash and light) on silk fabrics to a certain extent.

20.
Ecotoxicol Environ Saf ; 245: 114107, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152430

RESUMO

Source tracing of heavy metals in agricultural soils is of critical importance for effective pollution control and targeting policies. It is a great challenge to identify and apportion the complex sources of soil heavy metal pollution. In this study, a traditional analysis method, positive matrix fraction (PMF), and three machine learning methodologies, including self-organizing map (SOM), conditional inference tree (CIT) and random forest (RF), were used to identify and apportion the sources of heavy metals in agricultural soils from Lianzhou, Guangdong Province, China. Based on PMF, the contribution of the total loadings of heavy metals in soil were 19.3% for atmospheric deposition, 65.5% for anthropogenic and geogenic sources, and 15.2% for soil parent materials. Based on SOM model, As, Cd, Hg, Pb and Zn were attributed to mining and geogenic sources; Cr, Cu and Ni were derived from geogenic sources. Based on CIT results, the influence of altitude on soil Cr, Cu, Hg, Ni and Zn, as well as soil pH on Cd indicated their primary origin from natural processes. Whereas As and Pb were related to agricultural practices and traffic emissions, respectively. RF model further quantified the importance of variables and identified potential control factors (altitude, soil pH, soil organic carbon) in heavy metal accumulation in soil. This study provides an integrated approach for heavy metals source apportionment with a clear potential for future application in other similar regions, as well as to provide the theoretical basis for undertaking management and assessment of soil heavy metal pollution.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Cádmio , Carbono , China , Monitoramento Ambiental/métodos , Chumbo , Aprendizado de Máquina , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA